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Abstract

The solutions to two structural problems where edlusing the software Mastan2.
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1. Summary

After determining salient details for solving th@plem 1 by hand, Mastan2 was used
to produce important results and diagrams. In ol the relative qualities of
different arch designs where determined and thdtsegresented in various ways.

2. Introduction

Computational structural analysis is valuable fooldetermining how a structure will
behave and optimising the design. This report tetlag results from such uses in,
answering the assignment questions (see appendix).

3. Problem 1
3.1 Solutions

a) In solving problem 1 with the stiffness method thkkowing matrices would be
constructed:

Kff=[6 by 12]

Krf=[15 by 12]

Kfr=[12 by 15]

Krr=[15 by 15]

The stiffness matrix for a general member is gibelow:
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Figure 3.1a)

Member 4 is at an angle of 90 degrees to the glat@idinate system, which greatly
simplifies the matrix. With this knowledge and treues of area, young’s modulus
and length the numerical results for member 4 vi@rad and presented below:

12560 o -32400  -12960 o -32400
0 3K00000 a 0 -3600000 a
-32400 0 103000 32400 a 54000
12960 a 32400 12560 a 32400
0 -3600000 a 0 3k00000 a
-32400 a 54000 32400 0 103000

Figure 3.1.1a)
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O Point of Contraflexure
Figure 3.1b)
c) Deflected shape
The points of contraflexure are plotted in an exagted deflection diagram. The
maximum deflections are found by placing a nodi@foint of maximum deflection
and reading the values for that node. The pointoofraflexure where already found
in section b) and the results are also plottedguré 3.1a
The deflected shape is related to the bending mblme@astiglianos 2nd theorem:
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Equation 3.1c)Castiglianos #' theorem

Where phi is the slope of the deflection, U isshain energy and M is the bending
moment. The bending moment diagram is also rekat¢lde shear by integration. If
the boundary conditions are known the amplitudihefdeflection can be found by
Castiglianos ¥ theorem:
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Equation 3.1.2c)Castiglianos 1st theorem



Where delta is the deflection and W is the shearef By combining these two
results theldeflection diagram is obtained.
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d) Complete Shear and Axial
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€) Bending moment diagrams for beams 3 and 6 have fileted, which show the
maximum possible loading scenarios. Bending diagrof the 4 possible scenarios
are given in figure 3.1e). Shear force diagramsre/laéso produced as this may be of
importance if the material used can only be subpbtd limited amounts of shear.

Figure 3.1e)
Clockwise from top left: Full load on both; halfdd on both; full load beam3, dead
load on beam6; full load on beam6, dead load omBea
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necessary to consider such loading as the magnitudading will always be less that that of thbaat

loading conditions.

4. Problem 2
4.1 Assumptions

This problem requires assuming some values. Totge@ssignment some context
Garabit Rail Bridge (Figure 4.1) in France was mefe to in deciding some plausible

values. A simplified version using a single seci®shown in Figure 4.2.

It was determined that the values for this bridgeild be:

Value Justification

E=200 GPa (Wrought Iron)




1 kN load on each node

(span is approx 165m, tvableo
carriage trains 152 tonnes=152)N

pd

A= 63400nm? (these are the equivalent properties use
to attain reasonable values for axial

1=12900000006m* deflection, from Mastan2 data base )

Length=90m Mathematically simple (could scalefupj i

Figure 4.1 Garabit Bridge@ww.panoramio.com/photo/1140744

necessary)
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Figure 4.2Simplified version using symmetry
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4.2 Symmetry

Symmetry was used to reduce the required worktsAdpex the structure has no
change in angle. This is easily proven by diffeamtg the representing equation.
Therefore splitting the bridge in half and applyenghoment there we arrive at an
equivalent structure.

5 Solutions

Since the axial and shear stresses which will dgviel the beam depend on the
values of the shear forces and bending momenteib¢am these have be
calculated® The most efficient arch is one that has the moorm compressive
stress over its cross-section (such as a columerwardaxial load without any
eccentricity) -and therefore zero — or smallesgnrding moments).

The results are tabulated below (Figure 5):

H=L/2 Sine Parabola Circle
Moment 810 877 810
Axial -10 -13 -18
Shear -13 12 9
H=L/4

Moment 810 877 810
Axial -6 -13 -13
Shear 2 17 11
H=L/8

Moment 810 877 810
Axial -3 -17 -15
Shear 17 17 -8

On examining the above table it is clear that simee and circle design are both best

as they have the least bending moment.

11



5.1 Diagrams
a) Sine curve
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Figure 5.2a)axial loading
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Max Wy =-13.38

Max Wy = 1.582 \,

Max ¥y = 16.68

Figure 5.3a)Shear Force Y note that the bridge has negativar stigere it buckles.

Max Mz = 810 \,

Max Mz :sm&,

Figure 5.4a)Bending moment, all variants have the same maximenaing
moment
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b) Parabola

Figure 5.1b)Deflection

Figure 5.2b) Axial loading
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Figure 5.3b) Shear Force Y

Figure 5.4b) Bending moment, all variants have the same maxirenading moment
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Figure 5.1 c)Deflection
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Figure 5.2c)Axial force
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Figure 5.3c)Shear force
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Figure 5.4c)Bending moment
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